Team converts wet biological waste to diesel-compatible fuel

University of Illinois researchers using hydrothermal liquification

143175
Study first author Wan-Ting (Grace) Chen is now a professor at the University of Massachusetts, Lowell. (Photo courtesy Wan-Ting (Grace) Chen)

In a step toward producing renewable engine fuels that are compatible with existing diesel fuel infrastructure, researchers report they can convert wet biowaste, such as swine manure and food scraps, into a fuel that can be blended with diesel and that shares diesel’s combustion efficiency and emissions profile.

The researchers report the findings in the journal Nature Sustainability.

“The demonstration that fuels produced from wet waste can be used in engines is a huge step forward for the development of sustainable liquid fuels,” said Brajendra K. Sharma, a research scientist with the Illinois Sustainable Technology Center at the University of Illinois’ Prairie Research Institute and a co-author of the study. U. of I. agricultural and biological engineering professor Yuanhui Zhang led the research. His former graduate student Wan-Ting (Grace) Chen is the first author of the paper and a professor at the University of Massachusetts, Lowell.  Mechanical science and engineering professor Chia-Fon Lee and graduate student Timothy Lee led the engine tests.

“The United States annually produces 79 million dry tons of wet biowaste from food processing and animal production,” with more expected as urbanization increases, the researchers wrote. One of the biggest hurdles to extracting energy from this waste is its water content. Drying it requires almost as much energy as can be extracted from it.

Hydrothermal liquification is a potential solution to this problem because it uses water as the reaction medium and converts even nonlipid (nonfatty) biowaste components into biocrude oil that can be further processed into engine fuels, the researchers report.

Mechanical science and engineering graduate student Timothy Lee holds a sample of waste and a sample of distillate the team derived from that waste.

Previous studies have stumbled in trying to distill the biocrude generated through HTL into stable, usable fuels, however. For the new research, the team combined distillation with a process called esterification to convert the most promising fractions of distilled biocrude into a liquid fuel that can be blended with diesel. The fuel meets current standards and specifications for diesel fuel.

“Our group developed pilot-scale HTL reactors to produce the biocrude oil for upgrading,” Chen said. “We also were able to separate the distillable fractions from the biocrude oil. Using 10-20 percent upgraded distillates blended with diesel, we saw a 96-100 percent power output and similar pollutant emissions to regular diesel.”

Led by Zhang, the team is building a pilot-scale reactor that can be mounted on a mobile trailer and “has the capacity to process one ton of biowaste and produce 30 gallons of biocrude oil per day,” Zhang said. “This capacity will allow the team to conduct further research and provide key parameters for commercial-scale application.”

143171
The research team includes, from left, agricultural engineering professor Yuanhui Zhang; undergraduate student Zhenwei Wu; graduate student Timothy Lee; visiting scholar Buchun Si; Illinois Sustainable Technology Center senior research engineer B.K. Sharma; and Chia-Fon Lee, a professor of mechanical science and engineering at the U. of I. (Photo by L. Brian Stauffer)

 

Contact

Yuanhui Zhang
phone: 217-333-2693
email: yzhang1@illinois.edu.

 

The paper “Renewable diesel blendstocks produced by hydrothermal liquefaction of wet biowaste” is available online and from the U. of I. News Bureau.

DOI: 10.1038/s41893-018-0172-3

Source

University of Illinois, press release, 2018-12-04.

Supplier

University of Illinois
University of Massachusetts Lowell

Share

Renewable Carbon News – Daily Newsletter

Subscribe to our daily email newsletter – the world's leading newsletter on renewable materials and chemicals

Subscribe