Pine needles from old Christmas trees could be turned into paint and food sweeteners in the future

University of Sheffield researchers saved abandoned Christmas trees from landfill and turned them into paint and food sweeteners

A Christmas bauble hangs from a tree

  • 7 million UK Christmas trees end up in landfill after the festive period
  • Pine needles can be broken down to create new products such as sweeteners and paint
  • New process could lead to reduction in the UK’s carbon footprint

Abandoned Christmas trees could be saved from landfill and turned into paint and food sweeteners according to new research by the University of Sheffield.

Christmas trees have hundreds of thousands of pine needles which take a long time to decompose compared to other tree leaves. When they rot, they emit huge quantities of greenhouse gases which then contribute to the carbon footprint of the UK.

Cynthia Kartey, a PhD student from the University of Sheffield’s Department of Chemical and Biological Engineering, has found that useful products can be made from the chemicals extracted from pine needles when processed.

The major component (up to 85 per cent) of pine needles is a complex polymer known as lignocellulose. The complexity of this polymer makes using pine needles as a product for biomass energy unattractive and useless to most industrial processes.

Cynthia said: “My research has been focused on the breakdown of this complex structure into simple, high-valued industrial chemical feedstocks such as sugars and phenolics, which are used in products like household cleaners and mouthwash.

“Biorefineries would be able to use a relatively simple but unexplored process to break down the pine needles.”

With the aid of heat and solvents such as glycerol, which is cheap and environmentally friendly, the chemical structure of pine needles is broken down into a liquid product (bio-oil) and a solid by-product (bio-char).

The bio-oil typically contains glucose, acetic acid and phenol. These chemicals are used in many industries – glucose in the production of sweeteners for food, acetic acid for making paint, adhesives and even vinegar.

The process is sustainable and creates zero waste as the solid by-product can be useful too in other industrial chemical processes. Fresh trees and older, abandoned Christmas trees can both be used.

Cynthia continued: “In the future, the tree that decorated your house over the festive period could be turned into paint to decorate your house once again.”

The UK uses as many as 8 million natural Christmas trees during the festive period every year and sadly, about 7 million trees end up in landfill.

If pine needles were collected after Christmas and processed in this way, the chemicals could be used to replace less sustainable chemicals currently used in industry.

This could lead to a decrease in the UK’s carbon footprint by reducing the UK’s dependence on imported artificial plastic-based Christmas trees and a reduction in the amount of biomass waste going to landfill.

Dr James McGregor, Senior Lecturer in the Department of Chemical and Biological Engineering said: “The use of biomass – materials derived from plants – to produce fuels and chemicals currently manufactured from fossil resources will play a key role in the future global economy.”

“If we can utilise materials that would otherwise go to waste in such processes, thereby recycling them, then there are further benefits.”

“In our research group we are currently investigating the production of valuable products from a variety of organic wastes, including forestry sources, spent grain from the brewing industry and food waste; alongside investigating processes for the conversion on carbon dioxide into useful hydrocarbon compounds”

 

About the University of Sheffield

With almost 29,000 of the brightest students from over 140 countries, learning alongside over 1,200 of the best academics from across the globe, the University of Sheffield is one of the world’s leading universities.

A member of the UK’s prestigious Russell Group of leading research-led institutions, Sheffield offers world-class teaching and research excellence across a wide range of disciplines.

Unified by the power of discovery and understanding, staff and students at the university are committed to finding new ways to transform the world we live in.

Sheffield is the only university to feature in The Sunday Times 100 Best Not-For-Profit Organisations to Work For 2018 and for the last eight years has been ranked in the top five UK universities for Student Satisfaction by Times Higher Education.

Sheffield has six Nobel Prize winners among former staff and students and its alumni go on to hold positions of great responsibility and influence all over the world, making significant contributions in their chosen fields.

Global research partners and clients include Boeing, Rolls-Royce, Unilever, AstraZeneca, Glaxo SmithKline, Siemens and Airbus, as well as many UK and overseas government agencies and charitable foundations.

Source

University of Sheffield, press release, 2018-12-27.

Supplier

University of Sheffield

Share

Renewable Carbon News – Daily Newsletter

Subscribe to our daily email newsletter – the world's leading newsletter on renewable materials and chemicals

Subscribe