New catalyst to create chemical building blocks from biomass

Potential for mass use of lignin as feedstock for production of basic aromatic chemicals

University of Tokyo researchers have developed a novel selective catalyst that allows the creation of several basic chemicals from biomass instead of petroleum. This discovery may lead to the use of plant biomass as a basic feedstock for the chemical industry.

The new catalyst developed by Professor Kyoko Nozaki’s research group at the Graduate School of Engineering enables selective cleaving (hydrogenolysis) of carbon-oxygen (C-O) single bonds in phenols and aryl methyl ethers, two of the main components of lignin. Lignin is a major component of plant dry matter and has the potential to replace petroleum as the primary source of basic aromatic chemicals such as BTX (benzene, toluene, and xylene) and phenol. Producing these building blocks from lignin requires the selective hydrogenolysis of C-O bonds in phenols and aryl ethers, but their aromatic rings are also susceptible to hydrogenation. Using their new catalyst, the research group accomplished selective C-O bond hydrogenolysis without also cleaving the aromatic rings for the first time ever.

Professor Nozaki’s research group employed hydroxycyclopentadienyl iridium complexes as catalysts under hydrogen (dihydrogen) at atmospheric pressure. Using these new catalysts, arenols (phenol derivatives) were successfully deoxygenated to afford the corresponding arenes. In addition, aryl methyl ethers were converted selectively to arenols after demethylation with dihydrogen using the same catalysts.

“This study shows the potential of our catalysts for application to the mass use of lignin as feedstock for production of basic aromatic chemicals for the chemical industry, instead of using fossil fuels,” says Professor Nozaki. “Our final goal is to contribute to the creation of a sustainable society that makes efficient use of renewable resources.”

 

Journal article

Shuhei Kusumoto and Kyoko Nozaki, “Direct and Selective Hydrogenolysis of Arenols and Aryl Methyl Ethers” Nature Communications on 23rd February 2015. DOI: 10.1038/ncomms7296

Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

 

Contact

Professor Kyoko Nozaki
Department of Chemistry and Biotechnology
Graduate School of Engineering
The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Tel.: +81-3-5841-7261
Fax: +81-3-5841-7263
E-mail: nozaki@chembio.t.u-tokyo.ac.jp

 

Source

University of Tokyo (EurekAlert!), press release, 2015-02-23.

Supplier

nature (Journal)
University of Tokyo

Share

Renewable Carbon News – Daily Newsletter

Subscribe to our daily email newsletter – the world's leading newsletter on renewable materials and chemicals

Subscribe