30 September 2008

Propandiol aus Rapsglyzerin und Biokunststoff aus Molke

Fraunhofer-Institute stellen Fortschritte in der industriellen Biotechnologie vor

Erdöl ist der Ausgangsstoff für viele Produkte der chemischen Industrie. Doch dieser fossile Rohstoff wird immer knapper und teurer. Eine Alternative ist es, nachwachsende Rohstoffe zu nutzen. Doch müssen Bioethanol und Co. aus Nahrungsmitteln wie Zuckerrohr oder Getreide gewonnen werden? Nein. Über die weiße Biotechnologie lassen sich chemische Stoffe auch aus Abfallprodukten der Lebensmittelindustrie oder Restbiomasse aus der Forst- und Landwirtschaft oder Reststoffen gewinnen. Wie das gehen kann, demonstrieren Forscher des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart am Beispiel der biotechnischen Verwertung von Raps, Molke und Krabbenschalen.

Kunststoff und Lacke aus Raps
Bei der Herstellung von Biodiesel aus Rapsöl fällt als Nebenprodukt Rohglyzerin an. Wissenschaftler am IGB haben nun ein Verfahren entwickelt, mit dem sich Rohglyzerin in 1,3-Propandiol umsetzen lässt – einen chemischen Grundstoff für die Herstellung von Polyestern oder Holzlacken.

Bislang wird 1,3-Propandiol chemisch synthetisiert. Es gibt aber auch Mikroorganismen, die Glyzerin zu 1,3-Propandiol umsetzen können. So produziert das Bakterium Clostridium diolis den chemischen Grundstoff für die Herstellung von Polyestern oder Holzlacken in vergleichsweise hoher Ausbeute. Allerdings setzt das Bakterium kein Rohglyzerin um. Der Grund: Der schwarz gefärbte, wie verbrauchtes Motoröl aussehende Reststoff Rohglyzerin enthält aus dem Rapsöl übrig gebliebene Fettsäuren. Diese müssen zunächst abgetrennt werden. “Zudem hemmen sowohl das Substrat Glyzerin als auch das Produkt 1,3-Propandiol bei höheren Konzentrationen das Wachstum der Bakterien”, nennt Dr. Wolfgang Krischke vom IGB eine weitere Herausforderung bei der Entwicklung des biotechnologischen Prozesses. “Durch eine kontinuierliche Betriebsführung des Bioreaktors konnten wir dieses Problem weitgehend lösen. Denn bei annäherndem Vollumsatz des Glyzerins entfällt dessen Hemmwirkung. Auf diese Weise konnten wir einen stabilen Prozess mit hohen Produktkonzentrationen erzielen.”

Aus Rapsöl lässt sich noch ein weiteres chemisches Zwischenprodukt gewinnen – langkettige Dicarbonsäuren. Sie können bei der Herstellung von Polyamiden und Polyestern eingesetzt werden. Bisher lassen sich langkettige Dicarbonsäuren jedoch chemisch nur schwer synthetisieren. Eine Alternative ist die biotechnologische Fertigung. “Im Rapsöl sind Fettsäuren an Glyzerin gebunden. Werden diese abgespalten, können die freien Fettsäuren beispielsweise von verschiedenen Hefen der Gattung Candida zu Dicarbonsäuren umgesetzt werden”, erläutert Steffen Rupp vom IGB. Gemeinsam mit seinen Kollegen hat er einen fermentativen Prozess entwickelt, der mit gentechnisch modifizierten Hefen arbeitet, und bei dem die Spaltung des Rapsöls sowie die Umsetzung der Fettsäuren zu Dicarbonsäuren simultan erfolgt.

Bio-Plastik aus Molke
Ein Abfallprodukt bei der Herstellung von Milchprodukten ist Sauermolke. Bislang wird die Molke teuer entsorgt. Mit Hilfe von Michsäurebakterien lässt sich der in der Sauermolke enthaltene Milchzucker (Lactose) jedoch zu Milchsäure (Lactat) umsetzen. Lactat dient nicht nur als Konservierungs- und Säuerungsmittel in der Lebensmittelherstellung, sondern kann auch als Grundstoff in der chemischen Industrie eingesetzt werden – zum Beispiel in der Produktion von Polylactiden, biologisch abbaubaren Kunststoffen. Einweggeschirr und Schrauben für die Chirurgie aus Polymilchsäure gibt es bereits.

Feinchemikalien aus Krabbenschalen
Chitin ist nach Zellulose das am häufigsten vorkommende Biopolymer auf der Erde. Der nachwachsende Rohstoff fällt in der Aquakultur und bei der Verarbeitung von Meeresfrüchten wie Krabben in großen Mengen als Abfall an. In dem vom Bundesforschungsministerium geförderten Projekt “BioSysPro” untersuchen Forscher des IGB, ob sich Chitin durch den Einsatz von mikrobiellen Chitinasen als nachwachsender Rohstoff für die chemische Industrie erschließen lässt. Chitin kann von vielen Bakterien durch Chitinasen abgebaut werden. Diese Chitinasen spalten das lineare, unlösliche Homopolymer aus b-1,4-verknüpften N-Acetyl-Glucosamin-Einheiten zu Oligo- oder Monomeren. Ziel ist es, das Chitin zu Monomeren abzubauen, die anschließend hydrothermal zu gut modifizierbaren Grundbausteinen der Polymerchemie wie z. B. Stickstoffheterozyklen umgesetzt werden.

“Die Weiße Biotechnologie nutzt die Natur als chemische Fabrik. Herkömmliche chemische Produktionsprozesse werden durch den Einsatz von Mikroorganismen oder Enzymen ersetzt”, erläutert Prof. Thomas Hirth, Leiter des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB, den Ansatz. Auf der Messe Biotechnica vom 7. bis 9. Oktober in Hannover stellen die Forscher die Verfahren auf dem Fraunhofer-Gemeinschaftsstand in Halle 9, Stand E29 vor.

Source: Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB. Pressemitteilung, 2008-09-

Supplier

Share on Twitter+1Share on FacebookShare on XingShare on LinkedInShare via email