Ein Tandem für Biomasse

Katalytische Tamdenreaktion: Umsetzung von Lignin und Bioölen durch Dehydroxylation phenolischer Bestandteile in Arene

Als Ersatz oder Ergänzung von Erdöl wird Biomasse in Bioraffinerien zu Produkten verarbeitet, die als Kraftstoffe oder Ausgangsstoffe für die chemische Produktion eingesetzt werden. Problematisch ist dabei der hohe Sauerstoffgehalt vieler Biomasse-Bestandteile. Deutsche Forscher stellen in der Zeitschrift Angewandte Chemie nun ein auf einer Tandemreaktion basierendes Verfahren vor, das den Sauerstoffgehalt des Holzbestandteils Lignin sowie von Bioölen unter ungewöhnlich milden Bedingungen reduzieren könnte.

Ein Tandem für Biomasse - Katalytische Tamdenreaktion: Umsetzung von Lignin und Bioölen durch Dehydroxylation phenolischer Bestandteile in Arene
© Wiley-VCH

 

Eine Bioraffinerie entspricht im Prinzip einer Erdölraffinerie: Ein komplexes Stoffgemisch wird in einzelne Fraktionen oder Komponenten getrennt und teilweise veredelt, das heißt chemisch in andere, geeignetere Verbindungen umgesetzt. Der Holzbestandteil Lignin ist eine der wichtigsten Komponenten von Biomasse und fällt als Nebenprodukt in der Papier- und Zellstoffindustrie in großer Menge an. Aber auch in Bioraffinerien wurde bisher keine sinnvollere Anwendung für Lignin gefunden als als fester Brennstoff.

Lignin ist eine uneinheitliche Gruppe phenolischer Makromoleküle. Unter Phenolen versteht man aromatische Kohlenwasserstoffsechringe mit Alkohol-(OH)-Gruppen. Die Depolymerisation von Lignin in niedrigsiedende Arene, das heißt sauerstofffreie Aromaten, anstatt in hochsiedende Phenole könnte eine enorme Vereinfachung konventioneller Raffinerieprozesse bedeuten.

Nun lassen sich aber phenolische OH-Gruppen aber nicht so einfach abspalten, denn die Bindung zwischen phenolischem Sauerstoff und aromatischen Sechsringen ist sehr stark. Bisherige Verfahren nutzen dazu einen Umweg über eine Derivatisierung: Eine elektronenziehende Gruppe wird an den Sauerstoff geknüpft, die dessen Bindung dann so schwächt, dass sie katalytisch in Anwesenheit von Wasserstoff gespalten werden kann. Im großen Maßstab ist dieser Verfahrenstyp jedoch unpraktisch, da großen Mengen nicht mehr recyclebarer Nebenprodukte entstehen.

Xingyu Wang and Roberto Rinaldi vom Max-Planck-Institut für Kohlenforschung in Mülheim (Ruhr) stellen jetzt einen neuen einstufigen Prozess für die Depolymerisation von Lignin mit gleichzeitiger hochselektiver Umwandlung von Phenolen in Arene vor. Anders als vorherige Verfahren läuft er unter milden Bedingungen und ohne Umweg über Derivate.

Der Trick liegt in einer gekonnten Verkettung dreier Reaktionen zu einer Reaktionskaskade aus einer Startreaktion und einer Tandemreaktion. Raney-Nickel und ein Zeolith dienen als Katalysatorsystem. Da gasförmiger Wasserstoff dieses Reaktionssystem stören würde, muss er auf anderem Weg übertragen werden: 2-Propanol überträgt zunächst Wasserstoff in der Startreaktion, das in Phase 1 der Tandemreaktion entstehende Cyclohexen überträgt dann den Wasserstoff in Phase 2 der Tandemreaktion.

Die neue Methode ist ein vielversprechender Ausgangspunkt für innovative industrielle Prozesse zur Veredelung von Lignin sowie der phenolischen Fraktion von Bioölen. Die Umsetzung von Lignin in einfache Arene eröffnet einen neuen Weg, um die Bioraffinerie von Lignocellulose anzukurbeln.

Kontakt: Roberto Rinaldi, Max-Planck-Institut für Kohlenforschung, Mülheim (Ruhr) (Deutschland)

Über den Autor
Dr. Roberto Rinaldi ist Selbstständiger Gruppenleiter am Max-Planck-Institut für Kohlenforschung in Mülheim an der Ruhr. Seit mehr als 6 Jahren arbeitet er auf dem Gebiet der Bioenergie. In 2010 wurde er mit dem Sofja-Kovalevskaja-Preis der Alexander-von- Humboldt-Stiftung ausgezeichnet, um seine Forschungsgruppe auf dem Gebiet der katalytischen Veredelung von Lignin zu gründen.

Weitere Informationen:
– Registrierte Journalisten können hier den Originalartikel herunterladen:
A Route for Lignin and Bio-Oil Conversion: Dehydroxylation of Phenols into Arenes by Catalytic Tandem Reactions

Source

Angewandte Chemie, WILEY-VCH Verlag GmbH & Co. KGaA, Pressemitteilung, 2013-09-24.

Supplier

Max-Planck-Institut für Kohlenforschung

Share

Renewable Carbon News – Daily Newsletter

Subscribe to our daily email newsletter – the world's leading newsletter on renewable materials and chemicals

Subscribe