4 Oktober 2018

Biosolarzelle produziert Wasserstoff

Das halbkünstliche System ist wie ein Legokasten aufgebaut – was vielfältige Anwendungen für die Zukunft eröffnet

Ein internationales Forscherteam hat molekulare Bausteine von Pflanzen und Mikroorganismen in einer Biosolarzelle kombiniert, sodass sie Lichtenergie ohne Umwege zur Produktion von Wasserstoff nutzen konnten. In der Natur kommt diese Kombination so nicht vor: Pflanzen können zwar Lichtenergie nutzen, um Kohlendioxid in Biomasse zu verwandeln, aber keinen Wasserstoff produzieren. Manche Bakterien hingegen können Wasserstoff produzieren, aber nicht direkt mithilfe von Lichtenergie.

 Die Bochumer Projektbeteiligten Marc Nowaczyk (rechts) und Adrian Ruff © RUB, Marquard

Die Bochumer Projektbeteiligten Marc Nowaczyk (rechts) und Adrian Ruff
© RUB, Marquard

„Von der Kombination der beiden Prozesse erhoffen wir uns langfristig eine nachhaltige Herstellung des potenziellen Energieträgers Wasserstoff“, sagt Privatdozent Dr. Marc Nowaczyk vom Lehrstuhl Biochemie der Pflanzen der Ruhr-Universität Bochum.

Die Ergebnisse beschreibt ein Team um Dr. Erwin Reisner von der University of Cambridge gemeinsam mit Marc Nowaczyk und Dr. Adrian Ruff vom Bochumer Zentrum für Elektrochemie in der Zeitschrift „Nature Energy“, online veröffentlicht am 3. September 2018.

Bausteine aus Bakterien

Die hocheffizienten Komponenten zur Lichtumwandlung, die sogenannten Photosysteme, isolierten die Forscher aus Cyanobakterien, die wie Pflanzen Licht als Energiequelle nutzen können. Die Komponente zur Wasserstoffproduktion – ein Enzym namens Hydrogenase – gewannen sie aus Bakterien, die unter sauerstoffarmen Bedingungen leben. Diese Bausteine kombinierten sie mit Redoxpolymeren, die die Energie von den lichtaktiven Elementen zu einer Elektrode weiterleiteten, welche die Wasserstoffproduktion antrieb.

„So konnten wir erstmals eine Biosolarzelle entwickeln, die direkt einen chemischen Energieträger, in unserem Fall Wasserstoff, erzeugt“, resümiert Adrian Ruff.

Komponenten leicht austauschbar

Der modulare Aufbau des Systems ermöglicht einen einfachen Austausch der biologischen und chemischen Bauteile, sodass einzelne Komponenten weiter optimiert oder durch neue Funktionen ersetzt werden können. „Unser molekularer Legokasten bietet vielfältige Möglichkeiten für zukünftige Anwendungen“, sagt Marc Nowaczyk. „Denkbar wäre es zum Beispiel, flüssige Energieträger auf der Basis von Kohlenstoff aus dem klimaschädlichen Kohlendioxid herzustellen.“

Source: Ruhr-Universität Bochum, Pressemitteilung, 2018-09-26.

Supplier

Share on Twitter+1Share on FacebookShare on XingShare on LinkedInShare via email